skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wiqas, Amen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Zinc is important in neurogenesis, but excessive levels can cause apoptosis and other pathologies leading to cognitive impairments. Mast cells are present in many brain regions including the hippocampus, an area rich in vesicular zinc. Mast cells contain zinc‐rich granules and a well‐developed mechanism for uptake of zinc ions; both features point to the potential for a role in zinc homeostasis. Prior work using the Timm stain supported this hypothesis, as increased labile zinc was detected in the hippocampus of mast cell‐deficient mice compared to wild‐type mice while no differences in total zinc were found between the two genotypes in the whole brain or other tissues. The current report further examines differences in zinc homeostasis between wild‐type and mast cell‐deficient mice by exploring the zinc transporter ZnT3, which transports labile zinc into synaptic vesicles. The first study used immunocytochemistry to localize ZnT3 within the mossy fibre layer of the hippocampus to determine whether there was differential expression of ZnT3 in wild‐type versus mast cell‐deficient mice. The second study used inductively coupled plasma mass spectrometry (ICP‐MS) to determine total zinc content in the whole dentate gyrus of the two genotypes. The immunocytochemical results indicate that there are higher levels of ZnT3 localized to the mossy fibre layer of the dentate gyrus of mast cell‐deficient mice than in wild‐type mice. TheICP‐MSdata reveal no differences in total zinc in dentate gyrus as a whole. The results are consistent with the hypothesis that mast cells participate in zinc homeostasis at the level of synaptic vesicles. 
    more » « less